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1. Introduction

This paper deals with chaotic behaviour for perturbations of in#nite-dimensional
autonomous Hamiltonian systems modelling a compressed forced beam and a Sine–
Gordon equation.
First we consider a PDE of the type

(H�) wtt + wzzzz + �wzz − �

(∫ 1

0
w2

z (t; �) d�

)
wzz = �(P(t; w)− 
wt); �≥ 0;

where w(t; z)∈R is the transverse de9ection of the axis of the beam; w(t; 0)=w(t; 1)=
wzz(t; 0)=wzz(t; 1)=0, � is an external load, �¿ 0 is a ratio indicating the extensional
rigidity and 
 is the damping.
The #rst result on the existence of a chaotic dynamics for system (H�) has been

given by Holmes and Marsden in [10] for a speci#c periodic forcing perturbation of
the type P(t; w(t; z))=f(z) cos(!t). They use the theory of invariant manifolds and of
non-linear semigroups in order to extend the classical Melnikov approach for planar
ordinary di=erential equations to system (H�).
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More precisely, the function w(t; z) = 0 is an equilibrium solution of the un-
perturbed Hamiltonian system (H0) with Liapounov exponents (i.e. the eigenvalues
of the linearized system at the equilibrium) given by

�2j = j2�2(�− j2�2) j = 1; 2; : : : ; (1.1)

and eigenvectors given by sin(j�z) (called the fundamental modes). Holmes and Mars-
den assume that

(�1) �2 ¡�¡ 4�2;

and then the equilibrium w=0 is unstable with one positive �1 and one negative −�1
eigenvalue, and possesses an in#nite-dimensional center manifold. Using the Fourier
expansion w(t; z) =

∑
j≥ 1 wj(t) sin(j�z) w.r.t. the basis of the eigenvectors sin(j�z),

(H0) is equivalent to an in#nite sequence of second-order Hamiltonian di=erential
equations, one for each modal coeHcient wj(t), given by

− Iw1 + �21w1 = (��4=2)w3
1 + N1(w);

: : : ;
Iwj + |�2j |wj = Nj(w) for j≥ 2;
: : :

where N1(w); : : : ; Nj(w); : : : j≥ 2 are non-linear coupling terms of third order (see sys-
tem (2.2)) for a more precise expression). Under hypothesis (�1) the equation for w1

is of DuHng’s type while the equations for wj (j≥ 2) behave near the equilibrium like
harmonic oscillators, with frequencies |�j|.
The one-dimensional unperturbed stable and unstable manifolds W s;u

0 , living on the
#rst mode sin(�z), coincide and support the family of homoclinic solutions u�(t; z) =
x�(t) sin(�z), where x�(t)= x0(t− �) and x0(t)=

√
4�21=��4 sech(�1t) is the homoclinic

solution of DuHng’s equation − Ix + �21x = (��4=2)x3 with ẋ0(0) = 0, x0(t)¿ 0.
Assume the non-resonance condition !2 �= |�2j | (for j=2; 3; : : :) between the forcing

frequency ! and the frequencies |�j| of the small oscillations of the beam near the
equilibrium. Then, when � is small enough, from the state w=0 branches a periodic orbit
��=O(�), with stable and unstable manifolds W u;s

� such that codim(W s
� )=dim(W u

� )=1.
Since the perturbation term f(z) cos(!t) is very simple, Holmes and Marsden are
able to compute the Melnikov function of the system explicitly. This allows to verify
that, for �
 �= 0 small enough, the Melnikov function has simple zeroes (a property
diHcult to be checked for a general perturbation terms P) and then that W s

� and W u
�

intersect transversally. By an application of the Smale–Birkho= theorem, the existence
of horseshoes in the system follows.
The same techniques of [10] have been applied by Holmes in [9] to a Sine–Gordon

equation like

(SG�)  tt −  zz + sin  = �(P(t;  )− 
 t) �≥ 0;

with  z(t; 0)= z(t; 1)=0. In this case, the unperturbed system possesses two equilibrium
solutions  ±(t)=±�. The Liapounov exponents of these equilibria are �2j=1−j2�2 with
eigenvectors cos(j�z) for j = 0; 1; : : : : Then also in this case the stationary states are
unstable with one positive and one negative eigenvalue, possess an in#nite dimensional
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center manifold, and are connected by two families of heteroclinic orbits x±� (t) (the
separatrices of the standard pendulum). For speci#c T -periodic forcing perturbations
P(·;  ) the equilibrium states ±� perturb to small periodic orbits �±� and one can
explicitly compute the corresponding Melnikov functions. By inspection, one can infer
that they possess simple zeroes and then that there exist transversal heteroclinic orbits
for (SG�) which imply a chaotic dynamics.
The role of the damping term �
wt is the following. For �
 �= 0, the “center di-

rections” sin(j�z); j≥ 2, for (H�) (resp. cos(j�z); j≥ 1 for (SG�)) become foci, i.e.
w= 0 (resp.  =±�) becomes an hyperbolic equilibrium whose Liapounov exponents
have real part −(�
=2) for j≥ 2 (resp. for j≥ 1). The undamped case (
 = 0) would
require an in#nite-dimensional version of Arnold di=usion (see [4]).
In recent years, starting with [1], another functional approach to study existence and

multiplicity of homoclinic orbits to a hyperbolic equilibrium for perturbed Lagrangian
and Hamiltonian systems in Rn has been developed (see also [3,8]). Homoclinic solu-
tions are found as critical points of the action functional f� =f0 + �f1. Let us assume
that the unperturbed functional f0 possesses a #nite-dimensional manifold Z of criti-
cal points (unperturbed homoclinic solutions) satisfying the non-degeneracy condition
ker f′′

0 (z) = TzZ ∀z ∈Z ; through a Liapounov–Schmidt-type reduction, the search of
critical points for the action functional f� is reduced to look for critical points of f�

restricted to a #nite-dimensional manifold Z� near Z . It turns out that, up to a constant,
the restriction of f� to Z� is very close to the PoincarNe–Melnikov function (the primitive
of the Melnikov function) and then a critical point of this latter function gives rise to a
critical point of the action functional f�, and hence to a homoclinic solution. In [7], the
approach of [1] has been generalized: when the PoincarNe–Melnikov function is oscillat-
ing, they #nd homoclinic orbits of multibump type implying a chaotic dynamics in the
system (in particular the topological entropy is positive, see [12]). In [5], the results of
[7] have been extended proving the existence of in#nitely many heteroclinic orbits for
perturbed Lagrangean systems possessing two or more hyperbolic equilibrium states.
The aim of this paper is to extend the results of Holmes and Marsden [10] and of

Holmes [9]; more precisely the improvements of our approach are the followings:
(1) We do not require any restriction on the time dependence of the perturbation

P(·; w), such as periodicity, almost periodicity, etc.
(2) In order to obtain homoclinics for (H�), resp. heteroclinics for (SG�), the Mel-

nikov function can possess zeroes that are just “topologically simple” (see De#ni-
tion 4.1).

In this case, the corresponding homoclinics will not be transversal and one cannot
invoke (even in the periodic case) the Smale–Birkho= theorem in order to prove the
existence of chaotic trajectories of multibump type.
We note that our condition, called “Melnikov oscillating”, needed to #nd a chaotic

behaviour, is always satis#ed when P(·; w) is periodic, quasi-periodic or almost-periodic
in time and when the Melnikov function is non-constant.
(3-i) We can apply our method when �∈ (m2�2; (m+ 1)2�2) for m= 2; 3; : : : : In this

case, the #rst m equations for the modal coeHcients wj become a system of
m-coupled DuHng equations (the other directions are still centers), dimW s

0 =
dimW u

0 = m and there exists at least one homoclinic solution of (H0) which
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satis#es a suitable non-degeneracy (transversality) condition. For � small enough
we prove the existence of multibump homoclinics for the perturbed system which
bifurcate from this unperturbed homoclinic orbit.

(3-ii) We can also apply our approach when w is vector valued.
The techniques of Holmes and Marsden cannot be applied in cases (3-i) and (3-ii)
since, adapting the classical Melnikov approach, they work only for perturbations of
planar systems.
In order to prove our results we cannot apply directly the method developed in [1,7]

(see also [2,6]). Indeed, apart that (H�) (resp. (SG�)) is in#nite dimensional and the
equation is not variational, the main di=erence between system (H�) (resp. (SG�)) and
the ones considered in [1,7] (resp. [5]) is that, w=0 (resp.  =±�) is not a hyperbolic
point of equilibrium for (H0) (resp. SG0). This requires modi#cations in the proofs:
for �
 �= 0 the damping term produces an �
-hyperbolicity in the equilibrium but
then the unperturbed homoclinics (resp. heteroclinics) u� (resp. x±� ) are just �-pseudo
solutions of (H�) (resp. SG�) and system (H�) (resp. SG�) is no longer Hamiltonian.
However, using the contraction mapping theorem, it is still possible to perform, for �
small enough, a #nite-dimensional reduction near the unperturbed solutions u� (resp.
x±� ) analogue to the one of [1,7] (resp. [5]).
After this paper was completed, we learned about a paper by McLaughlin and Shatah

[11] which deals with the persistence of homoclinics for the perturbed Sine–Gordon
equation. The methods that the authors use are similar to ours. They consider as unper-
turbed homoclinic the “breather” solution while we consider an unperturbed homoclinic
which depends only on the time variable. It is easy to see that our method applies also
starting from an unperturbed breather homoclinic. Unlike the paper [11], we consider
also the existence of in#nitely many homoclinics and of solutions with in#nitely many
bumps which imply the existence of a chaotic dynamics. We also learned about a
forthcoming paper by Shatah and Zeng [13], where the McLaughlin and Shatah result
has been proved to hold, still for 1-bump solutions, for more general perturbation terms
(still periodic in time).

2. Functional setting

We shall use as “phase space” for the evolution equation (H�) one of the following
Banach spaces of functions of the spatial variable z ∈ [0; 1]= I de#ned, for any integer
k ∈N by

Ck
D(I) =


u(z)=

∑
j≥ 1

uj sin(j�z)

∣∣∣∣∣∣
∑
j≥ 1

|uj|j k ¡ +∞

 with norm ‖u‖Ck

D
=
∑
j≥1

|uj|j k :

We clearly have that Ck′
D (I)⊂Ck

D(I) if k ¡k ′.
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We look for solutions homoclinic to 0 of (H�), i.e. solutions with ‖w(t)‖C4
D
;

‖ẇ(t)‖C4
D
→ 0 as |t| → +∞. Then we de#ne the following spaces of curves in the

phase space:

Ek =


w(t; z) =

∑
j≥ 1

wj(t) sin(j�z) |wj(·)∈C0(R;R) (i:e: wj(t) → 0 as t → ±∞)

and
∑
j≥ 1

‖wj‖∞j k ¡ +∞

 ;

with norm ‖w‖Ek =
∑

j≥ 1 ‖wj‖∞j k , and we set

Ẽk =

{
u∈Ek

∣∣∣∣∣
∫ 1

0
u(t; z) sin(�z) dz = 0

}
so that Ek = C0(R)⊕ Ẽk :

We will also de#ne

Bk =


w(t; z) =

∑
j≥ 1

wj(t) sin(j�z) |wj(·)∈BC(R;R) (bounded continuous)

and
∑
j≥ 1

‖wj‖∞j k ¡ +∞



with norm ‖w‖Bk =
∑

j≥ 1 ‖wj‖∞j k ; clearly, Ek ⊂Bk and Ek ⊂C0(R; Ck
D(I)) = {w :

R → Ck
D(I) | continuous with ‖w(t)‖ → 0 as t → ±∞}. All solutions homoclinic to

w = 0 are contained in E4.
We assume

(P1) P(t; w)∈C1(R×C4
D; C

2
D) with P(t; 0)=0, DwP(t; 0)=0∈L(C4

D(I); C
2
D(I)), P(·; w),

DwP(·; w)∈L∞(R) on bounded sets of C4
D and such that there is a +0 ¿ 0 such

that in B(0; +0)={w∈C4
D(I) | ‖w‖C4

D(I)
≤ +0} DwP(t; w) is T-Lipschitz continuous,

i.e. for all w; Uw∈B(0; +0)

‖DwP(t; w)− DwP(t; Uw)‖L(C4
D;C

2
D)
≤T‖w − Uw‖C4

D
:

It will be useful to write the perturbation P as P(t; w) =
∑

j≥ 1 pj(t; w) sin(j�z) =
p1(t; w) sin(�z) + P2(t; w), where P2(t; w) =

∑
j≥ 2 pj(t; w) sin(j�z)∈ Ẽ2.

In this section, we assume hypothesis (�1).
By (P1), w=0 is as equilibrium solution of (H�) and the linearized equation at the

equilibrium is

(L�) wtt + �
wt + wzzzz + �wzz = 0:

with w(t; 0) = w(t; 1) = wzz(t; 0) = wzz(t; 1) = 0. Setting w(t; z) = w0(z)e�t and solving
for the eigenvalues and eigenvectors we obtain

�2w0(z) + ��
w0(z) + w(iv)
0 (z) + �w′′

0 (z) = 0
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with w0(0)=w0(1)=w′′
0 (0)=w′′

0 (1)=0. Hence that sin(j�z) are the eigenvectors, and
the eigenvalues are the solutions of �2 + �
�− �2j = 0, that is

�±�; j =
1
2

[
−�
±

√
�2
2 + 4�2j

]
j = 1; 2; : : : ; (2.1)

where �2j are the eigenvalues of (L0), given by (1.1). Clearly expanding a solu-
tion of (L�) w.r.t. the basis of the eigenfunctions sin(j�z), i.e. setting w(t; z) =∑

j≥ 1 wj(t) sin(j�z), we obtain an in#nite number of decoupled second-order equa-
tions one for each modal coeHcient wj(t) given by

− Iwj − �
ẇj + �2j wj = 0; j≥ 1:

It is useful to study system (H�) separatly along the hyperbolic mode sin(�z) and
the �-hyperbolic modes sin(j�z) for j≥ 2 along which the dynamics is quite di=erent.
We write

w(t; z) = x(t) sin(�z) + u(t; z)

with u(t; z)=
∑

j≥ 2 uj(t) sin(j�z)∈ Ẽ4 and substitute in (H�). We obtain the following
system in the variables (x; u):

(S�)




− Ix − �
ẋ + -x = .x3 + ��2x
(∫ 1

0
u2z (t; �) d�

)
− �p1(t; x; u);

utt + �
ut + uzzzz +
(
�− �x2�2

2

)
uzz = �

(∫ 1

0
u2z (t; �) d�

)
uzz + �P2(t; x; u);

where -= �21, .= ��4=2 and with a small abuse of notation, we have set p1(t; x; u) =
p1(t; x sin(�z) + u) and P2(t; x; u) = P2(t; x sin(�z) + u). In “coordinates”, system (S�)
has the form

− Ix − �
ẋ + -x = .x3 + ��2x
(∫ 1

0
u2z (t; �) d�

)
− �p1(t; x; u);

: : :

Iuj + �
u̇ j +
[
j2�2(j2�2 − �) + j2

��4
2

x2(t)
]
uj (2.2)

=− �(j�)2uj

(∫ 1

0
u2z (t; �) d�

)
+ �pj(t; x; u) for j≥ 2:

: : :

An homoclinic for system (S�) is a solution with x(t); ẋ(t) → 0 and ‖u(t)‖C4
D
;

‖u̇(t)‖C4
D
→ 0 as |t| → +∞.

In order to apply the contraction mapping theorem, we consider the linear Green
operators L� and G� which are, respectively, the inverses of the di=erential operators

@tt + �
@t + @zzzz +
(
�− �x2�(t)�2

2

)
@zz and − d2

dt2
− �


d
dt

+ -

with zero Dirichlet boundary conditions at t → ±∞, which allow us to write system
(S�) in the form of an integral equation. The following lemmas can be proved.
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Lemma 2.1. There exist positive constants C1; C2 such that for all f∈ Ẽ2 there exists
a unique solution u∈ Ẽ4 of

utt + �
ut + uzzzz +
(
�− �x2�(t)�2

2

)
uzz = f (2.3)

given by L�(f) := u=
∑

j≥ 2 uj(t) sin(j�z) with

uj(t) =−
(∫ t

−∞
e(�
=2)(s−t)wj(s)fj(s) ds

)
vj(t)

+
(∫ t

−∞
e(�
=2)(s−t)vj(s)fj(s) ds

)
wj(t); (2.4)

where ‖wj‖∞ ≤C1=j2 and ‖vj‖∞ ≤C2. There exists C3 ¿ 0 such that L� : Ẽ2 → Ẽ4

satis9es

‖L�f‖E4 ≤
C3

�

‖f‖E2 :

Moreover; this estimate can be improved for exponentially decaying functions: if 3
is a real function satisfying |3(t)| ≤ ae−b|t| for some a; b¿ 0 and f∈E2 then

‖L�(f3)‖E4 ≤
a
b
C′
3‖f‖E2

for a suitable constant C′
3 which does not depend on �.

Lemma 2.2. Let f∈C0(R). There exists a unique C2-solution u∈C0(R)
− Iu− �
u̇+ -u= f

given by

u :=G�(f) =
1√

(�
)2 + 4-

[∫ +∞

t
f(s)e�

+
�; 1(t−s) ds+

∫ t

−∞
f(s)e�

−
�; 1(t−s) ds

]
;

where �±�;1 = (12 )(−�
 ±
√

�2
2 + 4-) are the roots of p(�) = −�2 − �
� + -. There
exist C4; C5 ¿ 0 such that
(i) ‖G� − G0‖L(C0 ;C0) ≤C4� as � → 0,
(ii) ‖G�‖L(C0 ;C0) ≤C5 as � → 0.

Finally, we consider the non-linear operator S�(x; u) : C0(R) × Ẽ4 → C0(R) × Ẽ4

given by

S�(x; u) =




x − G�(.x3 + ��2x
(∫ 1

0
u2z

)
− �p1(t; x; u))

u− L�( ��
2

2 (x2 − x2�)uzz + �

(∫ 1

0
u2z

)
uzz + �P2(t; x; u))


 :

It can be easily seen that a non-trivial zero of S�(x; u) in C0(R)×Ẽ4 is an homoclinic
solution to 0 of system (S�), i.e. a solution with satisfying also ‖ẋ(t)‖∞; ‖u̇(t)‖C4

D(I)
→

0 as |t| → +∞.
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3. The �nite-dimensional reduction

The unperturbed autonomous system (H0) possesses a one-dimensional manifold of
homoclinic solutions given by x� sin(�z). Equivalently,

Z = {(x�(·); 0) = (x0(· − �); 0) | �∈R}⊂C0(R)× Ẽ4

is a one-dimensional manifold of homoclinic solutions for system (S0). Its tangent
space at (x�; 0) is given by T(x�;0)Z = span(ẋ�; 0).

Remark 3.1. The non-degeneracy condition span(ẋ�) = K holds, where K is the
linear space of the solutions v of the linear equation − Iv+-v=3.x2�v with v(t) → 0 as
|t| → +∞. ẋ� ∈K and dimK = dimTpW s

0 ∩ TpW u
0 ; for any p∈ �, where �; denotes

the homoclinic trajectory (x0; ẋ0) in the phase space R2 (see [2]). Since W s
0 =W u

0 and
dimW u;s

0 = 1; we conclude that span(ẋ�) =K.

In order to study the dynamics of (S�) in a neighborhood of (x�; 0) we perform, for
� small enough, a Liapounov–Schmidt-type #nite-dimensional reduction using the con-
traction mapping theorem. This is the main lemma. We will always consider �∈ (0; 1)
in what follows. The following lemma holds.

Lemma 3.1. There are �1; C6 ¿ 0 and smooth functions (w(�; �); y(�; �); 8(�; �)) :
(−�1; �1)× R→ C0(R;R)× Ẽ4 × R such that:
(i) S�(x� + w�(�); y�(�)) = (8�(�)G�(ẋ�); 0);
(ii) (w�(�); ẋ�)L2 = 0;
(iii) ‖w�(�)‖∞; ‖y�(�)‖E4 ≤C6� for all 0¡�≤ �1 and �∈R.

Proof. Let us de#ne the function

H : R× R× C0(R)× R× Ẽ4 → C0(R)× R× Ẽ4

with components H1(�; �; w; 8; y)∈C0(R)× R and H2(�; �; w; 8; y)∈ Ẽ4 given by

H1 =

(
w − .(G�(x� + w)3 − G0(x3�))− G�

(
��2(x� + w)

(∫ 1

0
y2
z

)

−� p1(t; x� + w; y))− 8G�(ẋ�); (w; ẋ�)L2

)
;

H2 = y − L�

(
��2
2

(2x�w + w2)yzz + �

(∫ 1

0
y2
z

)
yzz + �P2(t; x� + w; y)

)
:

In order to satisfy conditions (i) and (ii), we must #nd (w; 8; y) such that

H (�; �; w; 8; y) = 0 (3.1)

(note that we cannot put �= 0 since the operator L� would not be de#ned any more).
Let B+ be the ball in C0(R)×R×Ẽ4 with norm |||(w; 8; y)|||=max(‖w‖∞; |8|; ‖y‖E4 ),

of centre 0 and radius + that is B+={(w; 8; y) ||||(w; 8; y)||| ≤ +}. We will solve Eq. (3.1)
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by means of the contraction-mapping theorem, proving that, provided � and + are small
enough, there is a unique (w(�; �); 8(�; �); y(�; �))∈B+ such that H (�; �; w(�; �); 8(�; �);
y(�; �)) = 0. We will assume 0¡+≤ 1.
In order to put (3.1) as a #xed-point problem we consider

@H1

@(w; 8) |(�;�;0;0;0)
[w; 8] = (w − G�(3.x2�w) + �G�(@xp1(t; x�; 0)w)

−8G�(ẋ�); (w; ẋ�)L2 ) (3.2)

which is “Id + Compact”. We shall use the following abbreviation b(�; �) =
@H=@(w; 8)|(�;�;0;0;0) ∈L(C0(R)× R).
The unique homoclinic solution v of the linearized system

− Iv+ -v= .3x2�(t)v− 8ẋ�;

(v; ẋ�)L2 = 0;

which tends to 0 as t → ±∞, is 0. Indeed, multiplyng by ẋ� the #rst equation and
integrating on R we obtain∫

R
(− Iv+ -v− .3x2�(t)v)ẋ� dt = 8

∫
R
ẋ20(t) dt:

Integrating by parts the #rst member we see that it is 0 and therefore 8=0. Then, by
Remark 3.1 v= cẋ� and, since (v; ẋ�)L2 = 0, we get c = 0.
It follows that b(0; �) is injective and hence invertible. Easy estimates using

Lemma 2.2 show that

∃ UC; U�¿ 0 such that ‖b−1(�; �)‖≤ UC ∀0¡�≤ U�: (3.3)

H (�; �; w; 8; y) = 0 is equivalent to F(w; 8; y) = (w; 8; y) with

F(w; 8; y) = (−b−1(�; �)H1(�; �; 0; 0; 0)− b−1(�; �)R(�; �; w; 8; y);

×L�(N (t; w; y) + �P2(t; x� + w; y))) with

R=H1(�; �; w; 8; y)− H1(�; �; 0; 0; 0)− b(�; �)[w; 8]

= (G�(−.(3x�w2 + w3) + ��2(x� + w)

(∫ 1

0
y2
z

)
− �(p1(t; x� + w; y)

−p1(t; x�; 0)− @xp1(t; x�; 0)w); 0)

and

N (t; w; y) =
��2
2

(2x�w + w2)yzz + �

(∫ 1

0
y2
z

)
yzz:

We will #nd �1 ¿ 0 and C6 ¿ 0 such that, if 0¡�≤ �1 and if += C6�, then
(i) F(B+)⊂B+;
(ii) F is a contraction on B+.
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First of all we have, using Lemmas 2.1, 2.2 and (P1) that

H (�; �; 0; 0; 0) = (−.(G�(x3�)− G0(x3�)) + �G�(p1(t; x�; 0));−�L�(P2(t; x�; 0)))

=O(�) for � → 0

We now prove (i). ∀(w; 8; y)∈B+, using (3.3), the above expression for R, (P1) and
the fact that (

∫ 1
0 y2

z (t; �) d�)≤C‖y‖2E4
we deduce that

‖F1(w; 8; y)‖ ≤ ‖ − b−1(�; �)H (�; �; 0; 0; 0)‖+ ‖b−1(�; �)‖ · ‖R(�; �; w; 8; y)‖
≤ UC�+ ‖H1(�; �; w; 8; y)− H1(�; �; 0; 0; 0)− b(�; �)[w; 8]‖
≤ C′(�+ �++ +2)≤C′′(�+ +2):

On the other hand, the second component satis#es the inequality ‖F2(w; 8; y)‖≤
C′′′((1=�)+3 + +2 + �) and then

‖|F(w; 8; y)‖|≤C7

(
�+ +2 +

+3

�

)
: (3.4)

We now prove (ii): ∀(w; 8; y); (w′; 8′; y′)∈B+ we have

‖F1(w; 8; y)− F1(w′; 8′; y′)‖ = ‖b−1(�; �)(R(�; �; w; 8; y)− R(�; �; w′; 8′; y′))‖
≤ C8+‖|(w; 8; y)− (w′; 8′; y′)‖| and

‖F2(w; 8; y)− F2(w′; 8′; y′)‖ ≤ C8

(
�+ ++

1
�
+2

)
‖|(w; 8; y)− (w′; 8′; y′)‖|:

We need to solve C7(�++2++3=�)≤ + and C8(�+2++(1=�)+2)¡ 1. These inequal-
ities are solved, for example, choosing C6 = 2C7 (i.e. + = 2C7�) and �∈ (0; �1) with
�1 :=min((4C2

7 (1 + 2C7))−1; (C8(1 + 2C7)2)−1). Then for �∈ (0; �1) we can apply the
contraction mapping theorem in BC6� and then we #nd a solution (w(�; �); 8(�; �); y(�; �))
with ‖(w(�; �); 8(�; �); y(�; �))‖≤C6�, that is Lemma 3.1-(iii). The fact that (w; 8; y) is
C1 is standard, see [7].

An immediate consequence of the previous lemma is

Lemma 3.2. Let 0¡�≤ �1. If 8�( U�)=0 then S�(x U� +w�( U�); y�( U�))=0 and then (x U� +
w�( U�)) sin(�z) + y�( U�) is an homoclinic solution of system (H�).

In the next lemma we give an asymptotic expansion for 8�(�)

Lemma 3.3. Let �∈ (0; �1). Then

8�(�) = �
1
A
M(�) + O(�2);

where

A=
∫
R
ẋ20(t) dt
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and

M(�) =
∫
R
(−p1(t; x�(t); 0) + 
ẋ�(t))ẋ�(t) dt =−

∫
R
p1(t; x�(t); 0)ẋ�(t) dt + 
A

is the “Melnikov function” of the system. Moreover; M(�) = W′(�) + 
A; where W is
the Poincar<e–Melnikov primitive de9ned by

W(�) =
∫
R
W (t; x�(t)) dt (3.5)

with −p1(t; x; 0) = (d=dx)W (t; x).

Proof. Since (x�+w�(�); y�) satis#es Lemma 3.1-(i), (x�+w�(�)) satis#es the equation

−(x� + w�)′′ − �
(x� + w�)′ + -(x� + w�)

= .(x� + w�)3 + ��2(x� + w�)

(∫ 1

0
(@zy�)2

)
− �p1(t; x� + w�; y�)− 8�(�)ẋ�:

(3.6)

Multiplying (3.6) by ẋ�, integrating on R, using that, for Lemma 3.1-(iii), (w�; y�) =
O(�) and that − Ix� + -x� = .x3� we deduce that∫

R
(−w′′

� + -w� − .3x2�w�)ẋ� + O(�2) + �M(�) = 8�(�)
∫
R
ẋ20:

Integrating by parts the #rst integral and using equation −(ẋ�)′′ + -ẋ� = 3.x2�ẋ� we
deduce Lemma 3.3.

4. Existence of homoclinic solutions of (H”)

By Lemmas 3.2 and 3.3, it follows that the existence of “topologically simple” zeroes
of the Melnikov function M(�) implies the existence of homoclinic solutions of system
(H�).

De�nition 4.1. We say that the Melnikov function M possesses in the interval ( U� −
R; U�+R) a “topologically simple” zero if M( U�−R) ·M( U�+R)¡ 0, i.e. if M changes
sign on [ U�− R; U�+ R].

Remark 4.1. We underline that the Melnikov function M always possesses zeroes
“topologically simple” when the perturbation P(·; w) is periodic, quasi-periodic or al-
most periodic in time, if the damping term is not too large and M(�) is non-constant.
Indeed, in the former cases M has in#nitely many “topologically simple” zeroes: the
condition “Melnikov oscillating” de#ned below is always satis#ed. Indeed, in these
cases the PoincarNe–Melnikov function W is resp. periodic, quasi-periodic, almost pe-
riodic (see [7]) and then it is easy to see that W′(�) satis#es condition “Melnikov
oscillating”. For 
 small enough the same holds for M(�).
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Theorem 4.1. Assume (P1) and (�1). If the Melnikov function has a topologically
simple zero for some U�∈R then for � small enough system (H�) has an homoclinic
solution u� near x0(· − �̃) sin(�z) with �̃∈ ( U�− R; U�+ R).

It is now possible, reasoning as in [7], to build multibump homoclinic solutions
leading to the existence of a chaotic dynamics. Let assume

Condition “Melnikov oscillating”: There are Um¿ 0 and a sequence {Un=(cn; dn)}n∈Z
of bounded open intervals of R which satisfy:
(i) For any n∈Z “M(cn)¿ Um andM(dn)¡− Um” or “M(cn)¡− Um andM(dn)¿ Um”.
(ii) cn → +∞ as n → +∞ and dn → −∞ as n → −∞.
We can prove the existence of two-bumps homoclinics

Theorem 4.2. Let (P1), (�1) and condition “Melnikov oscillating” hold. There exists
�2 ¿ 0 such that 0¡�≤ �2 and there exists D� such that if ci2 − di1 ¿D� then there
exists a homoclinic solution u� located near some (x�1 + x�2 ) sin(�z) with �1 ∈Ui1 and
�2 ∈Ui2 .

Because of the exponential decay at in#nity of x� the existence of solutions with
in#nitely many bumps follows.

Theorem 4.3. Let (P1); (�1) and condition “Melnikov oscillating” hold. ∀+¿ 0 there
is �3 ¿ 0 such that ∀0¡�≤ �3; there exists UD� ¿ 0 such that for any sequence of
intervals (Uil = (cil ; dil))l∈ J ⊂Z satisfying inf l∈ J (cil+1 − dil)¿D�; there are (�l)l∈ J

with �l ∈Uil = (cil ; dil) and a solution u� of (H�) which satis9es∥∥∥∥∥u� −
∑
l∈ J

x�l sin(�z)
∥∥∥∥∥
L∞(R;C4

D)

≤ +:

If J is in9nite; such a solution u� has in9nitely many bumps.

The last theorem implies that the topological entropy of the system is positive
(see [7,12]).

5. Other applications

In this section, we consider the following two cases:
(i) The de9ection of the beam w lies in a N -dimensional (N ≥ 2) space;
(ii) m2�2 ¡�¡ (m+1)2�2 (m≥ 2) and then the equilibrium w=0 has m-dimensional

stable and unstable manifolds.
In both cases (i) and (ii), system (H�) is no longer a perturbation of a planar system
and then the techniques of [10] cannot be applied.
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5.1. Radial systems

We consider the following system of PDEs:

(H�) wtt + wzzzz + �wzz − �

(∫ 1

0
|wz(t; �)|2 d�

)
wzz = �(P(t;w)− 
wt);

where w = (w1; : : : ; wN )∈RN , N ≥ 2, with boundary conditions w(t; 0) = w(t; 1) =
wzz(t; 0) = wzz(t; 1) = 0.
For any integer k ∈N we de#ne as in Section 2 the spaces

Ck
D(I;RN ) =


u(z) =

∑
j≥ 1

uj sin(j�z)

∣∣∣∣∣∣
∑
j≥ 1

|uj|j k ¡ +∞

 ;

uj = (u1j ; : : : ; u
N
j )∈RN ; |u|=

√√√√ N∑
i=1

(ui)2;

with norm ‖u‖Ck
D
=

∑
j≥ 1 |uj|j k .

Similarly, we consider the spaces of curves

Ek =


w(t; z) =

∑
j≥ 1

wj(t) sin(j�z)

∣∣∣∣∣∣wj(·)∈C0(R;RN ) and
∑
j≥ 1

‖wj‖∞j k ¡ +∞



with norm ‖w‖Ek =
∑

j≥ 1 ‖wj‖∞j k .
Assuming (�1), the equilibrium solution w=0 of (H0) has N -dimensional stable and

unstable manifolds W s;u
0 , they coincide and, due to the SO(N )-invariance of (H0); W s;u

0
are #lled by the homoclinics �x�(t), where �∈ SN−1; �∈R and x� = x0(· − �) are the
homoclinics of the scalar problem

− Ix + -x = .x3:

In other words, (H0) possesses an N -dimensional manifold of homoclinics to 0

Z = {�x�(·): �∈R; �∈ SN−1}:
Z is di=eormorphic to R × SN−1 and its tangent space is T�x�Z = {8�ẋ� + @x�:
8∈R; @∈T�SN−1}.

Remark 5.1. It results that T�x�Z =K, where K is the linear space of the solutions
v of the linear system − Iv + -v = 3.x2�v with v(t) → 0 as |t| → +∞. Indeed since
Z ia a N -dimensional manifold of homoclinic orbits, by di=erentiation one has that
T�x�Z ⊂K. Moreover, W s

0 = W u
0 and dimW u;s

0 = N . For any p∈W s
0 = W u

0 dimK =
dimTpW s

0 ∩ TpW u
0 = N , (see [2]). We conclude that T�x�Z =K.

We require that the perturbation satis#es the analogue of hypothesis (P1)
(P1′) P(t;w)∈C1(R×C4

D(I;RN ); C2
D(I;RN )) with P(t; 0)= 0; DwP(t; 0)= 0. P(·;w);

DwP(·;w)∈L∞(R) on bounded sets of C4
D and there exists +0 ¿ 0 such
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that in B(0; +0)={w∈C4
D | ‖w‖C4

D
≤ +0} DwP(t;w) is T-Lipschitz continuous, i.e.

for all w; Uw∈B(0; +0).
Then w ≡ 0 is an equilibrium still for (H�), the linearized system in 0 is formally
identical to (L�) and hence has the same eigenvalues ��

j, given by (2.1), which now
have geometric multiplicity N .
As in Section 2, we split w as

w(t; z) = x(t) sin(�z) + u(t; z)

with u(t; z) =
∑

j≥ 2 uj(t) sin(j�z). We get a system formally identical to (S�)

(S�)




− Ix− �
ẋ + -x = .|x|2x + ��2x
(∫ 1

0
|uz(t; �)|2 d�

)
− �p1(t; x; u);

utt + �
ut + uzzzz + (�− �|x|2�2
2 )uzz = �

(∫ 1

0
|uz(t; �)|2 d�

)
uzz + �P2(t; x; u)

the only di=erence being that the the #rst component is an N -dimensional system while
the second one is an N -dimensional system of PDEs. The extension to this case of the
procedure explained in Section 2 is quite easy and we get

Lemma 5.1. There are �4; C9 ¿ 0 and smooth functions (w(�; �; �); y(�; �; �);
(8; @)(�; �; �)) : (−�0; �0)× R× SN−1 → C0(R;RN )× E4 × R× TSN−1 such that
(i) S�(�x� + w�(�; �); y�(�; �)) = (G�(8�(�; �)�ẋ� + @�(�; �)x�); 0);
(ii) (w�(�; �); �ẋ�)L2 = 0 and

∫
R(w− (w · �)�)x� dt = 0;

(iii) ‖w�(�; �)‖∞; ‖y�(�; �)‖E4 ≤C9� for all 0¡�≤ �4, for all �∈R; �∈ SN−1.

Proof. We de#ne the function H =(H1; H2) :R×R×SN−1×C0×E4 → RN ×C0×E4

de#ned by

H1 =




�(w; �ẋ�)L2 +
∫
R
(w− (w ·�)�)x� dt

w−.(G�(|�x�+w|2(�x�+w)−G0(�x3�))−G�

(
��2(�x�+w)

∫ 1

0
|yz|2− �p1

)

−G�(8�ẋ� + @x�)


 ;

H2 =

(
y − L�

(
��2
2

(2�x�w+ w2)yzz + �

(∫ 1

0
|yz|2

)
yzz + �P2(t; �x� + w; y)

)
:

The operator

@H1

@(w; 8; @) |(�;�;�;0;0;0)
[w; 8; @]

=


 �(w; �ẋ�)L2 +

∫
R
(w− (w · �)�)x� dt

w− G�(3.x2�w) + �G�(@xp1(t; x�; 0)w)− G�(8�ẋ� + @x�)


 (5.1)
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is “Id + Compact”. Setting b(�; �; �)=@H=@(w; 8)|(�;�;�;0;0;0) ∈ L(C0(R)×R) the oper-
ator b(0; �; �) is injective (and hence invertible). In fact, the identity T�x�Z =K holds
as a consequence of Remark 5.1. Now, the proof follows Lemma 3.1.

Reasoning as in Lemma 3.3 one #nds that 8(�; �; �) = �(1=A)M1(�; �) + O(�2) and
@(�; �; �)=�(1=B)M2(�; �)+O(�2) where B=

∫
R x20 dt and M=(M1(�; �);M2(�; �)): R×

SN−1 → R× TSN−1

M1(�; �) =
∫
R
−p1(t; �x�(t); 0)�ẋ�(t) dt + 
A;

M2(�; �) = projT�SN−1

∫
R
−p1(t; �x�(t); 0)x�(t) dt

is the “Melnikov vector #eld”. “Topologically simple” zeroes of M give rise to ho-
moclinic solutions of (H�).
If p1(t;w) =∇wF(t;w) (namely, if the perturbation p1 on the #rst mode is Hamilto-

nian) we get that M(�; �) =∇W(�; �) + 
Ae1, where W(�; �) =
∫
R F(t; �x�(t)) dt is the

PoincarNe–Melnikov primitive of the system. Thus, topologically non-degenerate critical
points ( U�; U�) of W give rise to topologically simple zeroes of M if 
 is suHciently
small. The existence of a chaotic dynamics follows as in [7].

5.2. Greater values of �

In this section, we assume that (�2) the load � satis#es m2�2 ¡�¡ (m+ 1)2�2 for
m∈N and m≥ 2.
Assuming (�2), the equilibrium solution w=0 has m positive and m negative eigen-

values and still possesses an in#nite dimensional center manifold. Looking for solutions
of (H0) like

w(t; z) =
m∑

j=1

xj(t) sin(j�z)

we obtain that x = (x1; : : : ; xm) satis#es the following Hamiltonian system with
Hamiltonian R0 (the m-mode Galierkin approximation of (H0)):

(R0)




− Ix1 + �21x1 = .x1

(
m∑

l=1

l2w2
l

)
;

: : :

− Ixj + �2j xj = .j2xj

(
m∑

l=1

l2w2
l

)
2≤ j≤m− 1; .=

��4
2

;

: : :

− Ixm + �2mxm = .m2xm

(
m∑

l=1

l2w2
l

)
:

The functions (0; : : : ;±xj;�; : : : ; 0) are homoclinic solutions to 0 of system (R0), where

xj;�(t) = xj;0(t − �) and xj;0=
√
4�2j =��4j4 sech(�jt) is the homoclinic solution of the
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DuHng equation − Ix+ �2j x= .j4x3 with ẋj;0(0)=0 and xj;0(t)¿ 0. In other words, the
m-dimensional stable and unstable manifolds W s;u

0 of w=0 intersect at least along the
homoclinic orbits uj;� =±xj;�(t) sin(j�z).
Then the unperturbed equation (H0) possesses at least 2m families of homoclinics.

In order to apply the reduction approach of Section 3, one needs to check that one of
these homoclinics is “transversal on the zero energy level” according to the following
de#nition (see [5]).

De�nition 5.1. An homoclinic solution x0(t) of (R0) is said “transversal on the zero
energy level {R0(x) = 0}” if W s;u

0 intersect along (x0(t); ẋ0(t))t ∈R transversally on
{R0(x) = 0}.

This is the case for xm;� sin(m�z):

Lemma 5.2. The homoclinic solution (0; : : : ; xm;�) of (R0) is “transversal on the zero
energy level {R0(x) = 0}”.

Proof. In [5], it is shown that this condition is equivalent to require that the unique
solution (v1; : : : ; vm) of the linear system

− Ivj + �2j vj − (.j2m2x2m;�)vj = 0; 1≤ j≤m− 1;

− Ivm + �2mvm − (3.m4x2m;�)vm = 0
(5.2)

with vj(t) → 0 for |t| → +∞ (1≤ j≤m) is, up to a multiplicative factor, (0; : : : ; ẋm;�).
This last assertion is a simple consequence of the following lemma

Lemma 5.3. Let u :R→ R be a bounded solution of the linear equation

− Iu+ u− 3(t)u= 0; (5.3)

where 3(t) is a continuous function satisfying limt→±∞ 3(t) = 0. If either one of the
following conditions is satis9ed
(i) 3(t)≤ 1 ∀t ∈R;
(ii) (

∫
R 32(t) dt)1=2 ¡ 4=

√
3,

then u ≡ 0 is the unique bounded solution of (5:3).

Using Lemma 5.3 we show how it can be used to prove Lemma 5.2. The equations
forming system (5.2) are decoupled. It is easy to show that ẋ�;m is the unique bounded
solution of the mth equation. Then we just have to check that the unique bounded
solution of the #rst (m−1) equations is the trivial one. In order to do this, we perform
the rescaling

uj(t) = vj(t=�j); j = 1; : : : ; m− 1

so that (5.2) is equivalent to

− Iuj + uj − 3j(t)uj = 0 with 3j(t) =
.j2m2

�2j
x2m;�(t=�j)



M. Berti, C. Carminati / Nonlinear Analysis 48 (2002) 481–504 497

so it is easy to check, using the explicit expression of xm;�, that

‖3j‖∞ ≤ 2
j2

m2

�2m
�2j

and
(∫

R
32

j (t) dt
)1=2

= 2
j2

m2

�2m
�2j

√
�j

�m

4
3
:

Using the #rst estimate we see that condition (i) of the lemma is satis#ed for all
j¡m− 1 while using the second estimate we conclude that condition (ii) is satis#ed
for j = m− 1.

It is possible to perform the #nite-dimensional reduction of the previous section
obtaining the following Melnikov function:

Mm(�) =−
∫
R
pm(t; um;�(t))ẋm;�(t) dt + 


∫
R
ẋ2m;0(t) dt:

The existence of homoclinics and a chaotic dynamics for (H�) follow

Theorem 5.1. Let (P1); (�2) hold. Assume that Mm satis9es condition “Melnikov
oscillating”. Then the same statement of Theorem 4:3 (where x� sin(�z) is replaced
by xm;� sin(m�z)) holds.

6. Homoclinics to small non-constant trajectories

In Section 2 with assumption (P1), we have required that w=0 remains an equilib-
rium solution for system (H�); � �= 0. This of course rules out perturbations like those
considered by Holmes and Marsden in [10], namely P(t; w(t; z)) =f(z) cos!t, like all
the ones that do not depend on w. Nevertheless for this particular perturbation it can
be shown that, when ! �= |�j| for j= 2; 3; : : : for � small enough there exists a unique
u� ∈E4 solution of (H�) with ‖u�‖E4 =O(�) which bifurcate from the unperturbed equi-
librium w= 0. Therefore, one looks for a solution of (H�) homoclinic to u� namely a
solution w� ∈E4 such that ‖w�(t; ·)− u�(t; ·)‖C4

D(I)
→ 0 and ‖ẇ�(t; ·)− u̇ �(t; ·)‖C4

D(I)
→ 0

as |t| → +∞.
For hyperbolic equilibrium states the existence of such solutions u� which bifurcate

from the equilibrium is standard. In the present case, dealing with an equilibrium with
an in#nite set of pure imaginary eigenvalues, this is not always true. We need to
avoid the resonant cases between the forcing frequencies and such eigenvalues (the
frequencies of the small oscillations near the equilibrium). To be more precise let us
state some lemmas.

Lemma 6.1. There is a C10 ¿ 0 such that for any f∈B2 there exists a unique solu-
tion h :=L�(f)∈B4 of

htt + �
ht + hzzzz + �hzz = f:

The linear operator L� :B2 → B4 is continuous and satis9es the condition ‖L�‖L(B2 ;B4) ≤
C10=�
. Moreover; if f is almost periodic (periodic) in time; also h is almost periodic
(periodic) in time.
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Proof. The proof of the lemma is obtained decomposing f(t; z)=
∑

j≥ 1 fj(t) sin(j�z)
and u(t; z) =

∑
j≥ 1 uj(t) sin(j�z).

Now, we assume that (P2) P(t; w) = P(t) with P ∈B2, namely, P(t)(z) =
∑+∞

j=1

pj(t) sin(j�z) with
∑+∞

j=1 j2‖pj(·)‖∞ ¡ +∞.
By Lemma 6.1, we see that although the equation

htt + �
ht + hzzzz + �hzz = �P(t) (6.1)

has, for all �¿ 0, a unique solution h� ∈B4, it is not always true that ‖h�‖B4 → 0 as
� → 0 (this happens when in the perturbation P(t) there are frequencies in resonance
with the |�j|).
Thus, we make the following assumptions in order to avoid such resonant cases:

(Ri) There exists C11 ¿ 0 such that the solutions of (6.1) satisfy ‖h�‖B4 ≤C11� when
� → 0;

(Ri′) there is B∈B4 such that ‖h� − �B‖B4 = O(�2).
Condition (Ri′) clearly implies (Ri).

Remark 6.1. Both conditions (Ri) and (Ri′) are satis#ed in the case considered by
Holmes and Marsden, namely, when P(t)(z) = f(z) cos!t if !2 �= j2�2(j2�2 − �)
for all j≥ 2. More generally, the same computations and the superposition principle
show that also perturbations like P(t)(z) =

∑N
k=1 fk(z) cos(!kt + �k) satisfy (Ri) and

(Ri′) as soon as !2
k �= j2�2(j2�2 − �) for all j≥ 2 and 1≤ k ≤N ; moreover, if some

ratio !k=!k′ is not rational we shall get a solution which (as the forcing) is quasi
periodic but not periodic. One advantage of our approach is that we can still construct
a Melnikov function, even if the forcing is not periodic.

We now consider solutions of the non-linear system (H�).

Lemma 6.2. Assume (Ri). Then there is �5 ¿ 0 such that ∀�∈ (0; �5) there is a unique
u� ∈B4 solution of (H�) with ‖u�−h�‖B4 ≤ �. More precisely; we have ‖u�−h�‖=O(�2)
as � → 0. Moreover; if P(t) is almost periodic in time; then u� is almost periodic in
time.

Proof. The proof is obtained once again using the contraction mapping theorem. De#ne
the operator N : C4

D(I) → C2
D(I) by N (u) := (�

∫ 1
0 u2z dC)uzz. It is easy to check that

it induces an operator (that we shall call in the same way) N :B4 → B2 which is
homogeneous of degree 3; moreover,

‖N (u)‖B2 ≤C11‖u‖3B4
‖dN (u)‖L(B4 ;B2) ≤C11‖u‖24:

We look for a solution of (H�) of the form u�=w+h�; plugging it into equation (H�)
we see that u� must satisfy equation (H�) i= the #xed-point problem w=L�(N (h�+w))
has a solution w∈B4. Setting X�(w) :=L� ◦ N (h� + w) we see that X� :B4 → B4. We
claim that there is an �5 ¿ 0 such that
(i) X�(B�)⊂B�, for all �∈ (0; �5);
(ii) X� is a contraction on B� for all �∈ (0; �5).
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The proof is simple: if ‖w‖B4 ≤ � then

‖X�(w)‖B4 =

∥∥∥∥∥X�(0) +
∫ 1

0
dX�(sw)[w] ds

∥∥∥∥∥
B4

≤ �2C12: (6.2)

Moreover, we see that, if v; w∈B�, then

‖X�(w)− X�(v)‖B4 =

∥∥∥∥∥
∫ 1

0
dX�(v+ s(w − v))[w − v] ds

∥∥∥∥∥
B4

≤ �C13‖w − v‖B4 :

Choosing �5 ¡min{1=C12; 1=C13} both conditions are ful#lled for 0¡�¡�5 and the
claim is proved. By the contraction mapping theorem we get a unique solution w� in
B�. On the other hand, since w� =X�(w�) by Eq. (6.2) w� = u� − h� is O(�2).
As far as the almost periodicity (or periodicity) is concerned, we can check directly

that if P(t) is uniformly almost periodic (periodic) then also each component h�
j, the

solution of the linear problem, is almost periodic (periodic) and hence, by uniform
convergence, h�(t; ·) is uniformly almost periodic (periodic). To deduce that also u�

is almost periodic we may perform the previous contraction mapping on the subspace
B̃= {w∈B4: w =

∑
wj(t) sin(�jz); wj almost periodic (periodic) ∀j∈N}.

Since we are interested in solutions homoclinic to u� we write

(u� + w)tt + �
(u�+w)t +(u�+w)zzzz+�(u�+w)zz+N (u�+w) = P(t); w∈E4

with N (u) := (�
∫ 1
0 u2z d�)uzz. Since u� is a solution of (H�) the last equation can be

written as

wtt + �
wt + wzzzz + �wzz + N (w) = N (u�) + N (w)− N (u� + w): (6.3)

If we assume hypothesis (Ri′) then

N (u�) + N (w)− N (u� + w) = �P(t; w) + Q(�; t; w);

where

P(t; w) =−dN (w)[B(t; ·)] =
(
−�

∫ 1

0
2Bz(t; �)wz(t; �) d�

)
wzz

+

(
−�

∫ 1

0
w2

z (t; �) d�

)
Bzz (6.4)

is a perturbation which satis#es condition (P1) and Q(�; t; w)=O(�2). It is not diHcult
to check that, even though (due to the term Q) we are not exactly in the same situation
of Section 2, the #nite-dimensional reduction developed in 3 can be applied. In this
case, from (6.4) we deduce that the Melnikov function is

M∗(�) =
∫
R
p1(t; x�(t); 0)ẋ� + 


∫
R

ẋ20(t) dt = .
∫
R

B1(t)3x2�(t)ẋ�(t) dt + 
A:
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Since −(ẋ�)′′ + �21ẋ� =3.x2�ẋ� and − IB1 + �21B1 =p1(t; x�(t); 0), integrating by parts one
immediately #nds that

M∗(�) =
∫
R

p1(t; x�; 0)ẋ�(t) dt + 
A=M(�);

which is the usual Melnikov function. If p1 is periodic or almost periodic and 
 is not
too large, M satis#es the condition “Melnikov oscillating” and then

Theorem 6.1. Let (P2); (�1) and (Ri′) hold. Assume that M satis9es condition
“Melnikov oscillating”. Then; for � small enough; there exist a family of homoclinics
to u� which induce a chaotic behaviour according to Theorem 4:3.

The same type of result can be obtained using (�2).

7. Sine–Gordon equation

In this section, we show that the same type of results of the previous sections can
be obtained for the following Sine–Gordon equation (see [9])

(SG�)  tt −  zz + sin  = �(P(t;  )− 
 t)

with  z(t; 0) =  z(t; 1) = 0 adapting the techniques of the previous sections with those
of [5].
We introduce as “phase space” the following Banach spaces of functions of the

spatial variable z ∈ [0; 1] = I de#ned, for any integer k ∈N, by

Ck
N (I) =


E(z) =

∑
j≥ 0

Ej cos(j�z)

∣∣∣∣∣∣
∑
j≥ 0

|Ej|j k ¡ +∞

 with norm

‖E‖Ck
N
=

∑
j≥ 0

|Ej|j k :

We de#ne the following spaces of curves:

Ek =


3(t; z)=

∑
j≥ 0

3j(t) cos(j�z) |3j(·)∈C0(R;R) (i:e: 3j(t)→ 0 as t→±∞)

and
∑
j≥ 0

‖3j‖∞j k ¡ +∞



with norm ‖3‖Ek =
∑

j≥ 0 ‖3j‖∞j k ; moreover, Ẽk will denote the elements of Ek

which have zero mean value in the spatial variable z.
We shall make the following assumption on the perturbation P(t;  ) (see also

Remark 7.1):
(P3) P(t;  )∈C1(R×C4

N ; C
2
N ) with P(t;±�)=0, D P(t;±�)=0, P(·;  ), D P(·;  )∈

L∞(R) on bounded sets of C4
N and there exists +0 ¿ 0 such that in B(±�; +0) =

{ ∈C4
N (I) | ‖ − (±�)‖C4

N (I)
≤ +0} D P(t;  ) is T-Lipschitz continuous.
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It will be useful to write the perturbation P as P(t;  ) = p0(t;  ) +
∑

j≥ 1 pj(t;  )
cos(j�z) = p0(t;  ) + P1(t;  ), where P1(t;  ) =

∑
j≥ 1 pj(t;  ) cos(j�z)∈ Ẽ2.

By (P3)  (t)=±� are equilibrium solutions of (SG�), where the linearized equation
is

(SGL�)  tt + �
 t −  zz −  = 0;

with  z(t; 0)=  z(t; 1)=0. Letting  (t; z)=  ̃ (z)e�t and solving for the eigenvalues and
eigenvectors we obtain that cos(j�z) for j = 0; 1; : : : are the eigenvectors and that the
eigenvalues are

��;j =− �

2

±
√

�2
2

4
+ (1− j2�2); j = 0; 1; 2; : : : :

An heteroclinic orbit of (SG�) connecting −� to +� is a solution  (t; z) satisfying

lim
t→−∞ ‖ (t; ·)− (−�)‖C4

N
= 0; lim

t→+∞ ‖ (t; ·)− (+�)‖C4
N
= 0; and

lim
|t|→+∞

‖ ̇ (t; ·)‖C4
N
→ 0:

The unperturbed equation (SG0) possesses (on the #rst mode) two families of hetero-
clinic solutions

x±� (t) =±4 arctan
(
tanh

(
t − �
2

))

connecting the equilibrium points ±�, namely, x+� (t) connects −� to +� and x−� (t)
connects +� to −�.
We will show that for �
 �= 0 small enough (SG�) has in#nitely many solutions

 �(t; ·) winding in the phase space between ±� along the separatrices x±� .
For simplicity we shall look #rst for an heteroclinic solution  of (SG�) connecting

−� to +� near some x+� (t), i.e.  = x+� + 3 with 3∈E4 small. Clearly, the same
computations can be performed for the x−� . From now on we shall simply write x�
instead that x+� .
It is useful to study system (SG�) separately along the eigenvector cos(0�z) = 1

and the �
-hyperbolic modes cos(j�z) for j≥ 1. Then we set

 (t; z) = x(t) + u(t; z) = U (t) + u(t; z);

where U (t)=
∫ 1
0  (t; z) dz and u(t; z)= (t; z)− U (t)=

∑
j≥ 1 uj cos(j�z)∈ Ẽ4 (we then

have
∫ 1
0 u(z) dz = 0).

Since we look for heteroclinics which branch from the manifold {x�}�∈R we write
x(t) = x� + w(t) then

 (t; z) = (x�(t) + w(t)) + u(t; z):

Plugging this expression into (SG�) we obtain an in#nite set of second-order equations

− Iw − �
ẇ + w=
∫ 1

0
sin(x� + w + u(t; z)) dz − sin x� + w(t)

−�p0(t; x� + w + u) + �
ẋ�
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: : :

Iuj + �
u̇ j + (�j)2uj − cos x�(t) =Mj(t; w; u) + �pj(t; x� + w + u); j≥ 1;

: : : (7.1)

where

Mj(t; w; u) =−2
∫ 1

0
(sin(x�(t) + w(t) + u(t; z)) + cos x�(t)) cos(j�z) dz:

In compact form, we write

− Iw − �
ẇ + w=
∫ 1

0
sin(x� + w + u(t; z)) dz − sin x�) + w(t)

−�p0(t; x� + w + u) + �
ẋ�;

utt + �
ut − uzz − (cos x�)u=M (t; w; u) + �P1(t; x� + w + u); (7.2)

where

M (t; w; u) =−sin(x� + w + u) +
∫ 1

0
sin(x� + w + u(t; z)) dz − cos x�u:

Following the arguments of Section 2, we de#ne the linear Green operators L� and G�

which are, respectively, the inverses of the di=erential operators

@tt + �
@t − @zz − (cos x�) and − d2

dt2
− �


d
dt

+ 1;

with zero Dirichlet boundary conditions at t → ±∞, which allow us to write system
(SG�) in form of integral equations. We can write system (7.2) as S�;�(w; u)= 0 with
S�;� : C0(R)× Ẽ4 → C0(R)× Ẽ4 de#ned by

S�;�(w; u) =




w − G�

(∫ 1

0
sin(x� + w + u) dz + w − sin(x�)

−�p0(t; x� + w + u) + �
ẋ�

)

u− L� (M (t; w; u) + �P1(t; x� + w + u))




: (7.3)

The #nite-dimensional reduction can now be repeated like in Section 3 with slight
changes.

Lemma 7.1. There are constants �6; C15 ¿ 0; and smooth functions (w(�; �);
u(�; �); 8(�; �)) : (−�6; �6)× R→ C0(R;R)× Ẽ4 × R such that
(i) S�;�(w�(�); u�(�)) = (@�(�)G�(ẋ�); 0);
(ii) (w�(�); ẋ�)L2 = 0;
(iii) ‖w�(�)‖∞; ‖u�(�)‖E4 ≤C15� for all 0¡�≤ �6 and �∈R.

Proof. The proof can be performed like Lemma 3.1 observing that

‖L�((w + u)2 sin x�)‖E4 ≤C‖w + u‖E4
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and that Mj(t; w; u) = −sin(x�)
∫ 1
0 (w(t) + u(t; z))2 cos(�jz) dz + Qj(t; w; u); where

Q(t; w; u) =
∑

j≥ 0 Qj(t; w; u) cos(j�z) satis#es

‖Q(t; u+ w)‖C4
N
≤C′‖w + u‖3C4

N
:

This last expression can be obtained using the Taylor expansion

sin(x� + h) = sin x� + (cos x�)h− (sin x�)h2

2
−

(∫ 1

0
cos(x� + sh)

(1− s)2

2

)
h3:

We get

Lemma 7.2. Let 0¡�≤�6. If @�( U�) = 0 then S�; U�(w�( U�); u�( U�)) = 0 and then x U� +
w�( U�) + y�( U�) is an heteroclinic solution of system (SG�) connecting −� to +�.

Finally, we can show that the Melnikov function is

M(�) =
∫
R
(−p0(t; x�(t); 0) + 
ẋ�(t))ẋ�(t) dt =−

∫
R
p0(t; x�(t); 0)ẋ�(t) dt + 
A:

Moreover, M(�)=W′(�)+
A, where W is the PoincarNe–Melnikov primitive de#ned by

W(�) =
∫
R

W (t; x�(t)) dt (7.4)

with −p0(t; x; 0) = (d=dx)W (t; x).
The existence of zeroes of the Melnikov functions implies the existence of hetero-

clinic solutions yielding the following theorem

Theorem 7.1. Assume (P3). If M has a topologically simple zero in ( U� − R; U� + R)
for some U�∈R then for � small enough system (SG�) has an heteroclinic solution
 � near x0(· − �̃) with �̃∈ ( U�− R; U�+ R).

The previous arguments developed for x�=x+� can be developed also for x−� gaining
the same results. Moreover, it is also possible, arguing as in [5], to glue heteroclinic
orbits x+�i and x−�j in order to #nd orbits turning between the equilibria ±� leading to
the existence of a chaotic dynamics.

Remark 7.1. With assumtion (P3) we have required that the perturbation P(t;  ) pre-
served the equilibria ±�. Repeating the same arguments of Section 6 we can prove
also for (SG�), in the case of a purely time-dependent perturbation P(t) under some
nonresonance hypotheses, the existence of heteroclinic orbits joining small non-constant
trajectories, covering in this way the result by Holmes [9].
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